
NASA-CR-203082

NASA/WVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-96-015

WVU-SRL-96-015

WVU-SCS-TR-96- I 1

The Role of Independent V&V In Upstream Software

Development Processes

by Steve Easterbrook

- .o

National Aeronautics and Space Administration

West Virginia University

According to the terms of Cooperative Agreement #NCCW-0040,

the following approval is granted for distribution of this technical

report outside the NASA/WVU Software Research Laboratory

John R. Callahan Date

WVU Principal Investigator

In proceedings, 2rid Worm Conference on Integrated Design and Process Technology (IDPT) Austin, Texas, December 1-4
1996, as a keynote address to the track entitled "The Process Road from Requirements to System Architectures (and back)"

THE ROLE OF INDEPENDENT V&V IN UPSTREAM SOFTWARE
DEVELOPMENT PROCESSES

Steve Easterbrook
NASA/WVU Software Research Lab

NASA IV&V Facility, 100 University Drive, Fairrnont, WV 26554
steve @ atlantis.ivv.nasa.gov

Abstract

This paper describes the role of Verification and
Validation (V&V) during the requirements and high level
design processes, and in particular the role of Independent
V&V (IV&V). The job of IV&V during these phases is to
ensure that the requirements are complete, consistent and
valid, and to ensure that the high level design meets the
requirements. This contrasts with the role of Quality
Assurance (QA), which ensures that appropriate standards
and process models are defined and applied. This paper
describes the current state of practice for IV&V,
concentrating on the process model used in NASA
projects. We describe a case study, showing the processes
by which problem reporting and tracking takes place, and
how IV&V feeds into decision making by the development
team. We then describe the problems faced in
implementing IV&V. We conclude that despite a well
defined process model, and tools to support it, IV&V is
still beset by communication and coordination problems.

INTRODUCTION

Software errors can be very expensive. Earlier this year,
a software error was responsible for the loss of the
European Space Agency's Ariane 5, which was carrying a
payload worth $500 million. The error was due, primarily,
to a failure to ensure that new requirements (since Ariane
4) were fully propagated to all parts of the design [1]. A
number of opportunities to detect the error were missed
during the development process.

Schulmeyer [21 uses the term defects to describe latent
errors that remain in the software after delivery. In the
quest for zero-defect software, strategies are needed for cost
effecdve error prevention, and error detection and removal.
Most importantly, the earlier that errors are detected, the
cheaper they are to correct. Boehm [3] showed that fixing a
requirements error in the operations phase can be 100
times more expensive than fixing it in the requirements
phase. The reasons are simple. Errors made in the
requirements and high level design phases may affect many
different parts of the program. Therefore reliance on testing
alone is not cost effective for these types of error. In
addition, software that is exhaustively tested against its
requirements can still have defects, if the requirements
were wrong in the first place.

The job of ensuring high quality software is generally
termed software assurance. In practice, there are a number
of logically distinct activities that together cover the
assurance role [4]. It is normal to distinguish between

Quality Assurance (QA), Verification and Validation

(V&V) and Integration and Test (I&T). QA provides an
overall check that the standards and procedures are defined
and adhered to. Verification and Validation ensures that the

software will satisfy its functional, performance and
quality t requirements. I&T is responsible for thorough
testing of the code, from unit testing, through integration,
to acceptance testing by the customer. V&V should not be
confused with I&T. The role of V&V is to perform
analyses throughout the development process, to detect
problems as early as possible, preferably before they show
up in testing.

The theme of this track of the conference is "The

Process Road from Requirements to Systems Architectures
[and back]". The road metaphor is a useful one to help
understand the differences between QA and IV&V. The

process road needs policing, to prevent problems such as
speeding (i.e. moving too fast through the requirements
and high level design phases), and driving unsafe vehicles
(i.e. faulty or missing requirements, poor choice of
architecture, lack of traceability, etc.). The police are also
needed when accidents occur, helping to clear up the mess,
and sometimes making recommendations for preventative
improvements. This job is divided up as follows. QA
ensures that appropriate laws ("standards and procedures")
are applied, and checks for infringements of these laws.
V&V's job is to make sure that vehicles traveling on the
road are roadworthy, are heading in the right direction, and
will make it safely to their destinations.

This paper concentrates on the role of V&V in early
development phases. We first define verification and
validation, and explain the importance of independence.
We then describe how IV&V is applied in NASA projects,
and describe an example IV&V analysis activity. The
remainder of the paper describes some of the problems in
ensuring that IV&V is effective.

ROLE OF IV&V

The terms Verification and Validation are commonly
used in software engineering to mean two different types
of analysis. The usual definitions are:

Validation: Are we building the correct system?
Verification: Are we building the system correctly?

ITh¢ NASA software assurance standard, NASA-STD-2201-93,

distinguishes activities concerned with quality requirements (reliability,
maintainability, and so on) from those concerned with functional and

performance requirements, calling the former software quality

engineering, and the latter V&V. For simplicity, we treat all such

activities as V&V in this paper.

In other words, validation is concerned with checking that
the system will meet the customer's actual needs, while
verification is concerned with whether the system is well-
engineered. The distinction between the two terms is
largely to do with the role of specifications. Validation is
the process of checking whether the specification captures
the customer's needs, while verification is the process of
checking that the software meets the specification.

Verification includes all the activities associated with

the producing high quality software: testing, inspection,

design analysis, specification analysis, and so on. It is a
relatively objective process, in that if the various products
and documents are expressed precisely enough, no
subjective judgments should be needed in order to verify
software. In contrast, validation can be an extremely
subjective process. It involves judgments of how well the
(proposed) system addresses a real-world need. Validation
includes activities such as requirements modeling,
prototyping and user evaluation.

In a traditional phased software lifecycle, verification is
often taken to mean checking that the products of each
phase satisfy the requirements set in the previous phase.
Validation is relegated to just the beginning and ending of
the project: requirements analysis and acceptance testing.
This view is common in many software engineering
textbooks, and is misguided. It assumes that the
customer's needs can be captured completely at the start of
a project, and that those needs will not change while the
software is being developed. In practice, requirements
change throughout a project, partly in reaction to the
project itself: the development of new software makes new
things possible. Therefore both validation and verification
are needed throughout the iifecycle.

For practical purposes, the distinction is not important.
V&V is now regarded as a coherent discipline: "Software
V&V is a systems engineering discipline which evaluates
the software in a systems context, relative to all system
elements of hardware, users, and other software" [5].

Independence

For independent V&V, the customer hires a separate
contractor to analyze the products and process of the
software development contractor. This analysis is
performed in parallel with the development process,
throughout the software lifecycle, and is additional to any
in-house V&V performed by the developer. IV&V is
applied in high-cost and safety-critical projects to
overcome analysis bias and reduce development risk. The
customer relies on the IV&V contractor as an informed,
unbiased advocate to assess the status of a project's
schedule, cost, and the viability of its product during
development:

"[IV&V] is a process whereby the products of the
software development life cycle phases are
independently reviewed, verified, and validated by an
organization that is neither the developer nor the
acquirer of the software. The IV& V agent should have
#1ostake in the success or failure of the software." [4].

IV&V employs many types of analysis, including
analysis of requirements, design, code, performance,
schedule, and cost, as well as testing.

In practice, different degrees of independence are
possible. There are three dimensions along which
independence of the IV&V agent can be measured:
managerial, financial and technical [6]. Managerial
independence refers to the separation of responsibility for
IV&V from the organization developing the software. This
separation should allow the IV&V agent to decide for itself
how and where to focus its efforts. Financial independence
refers to control of the IV&V budget. If this budget is
separated from the development budgel, it reduces the risk
that IV&V funding will be diverted or reduced to exert
influence on the IV&V agent. Technical independence
refers to the fresh perspective gained from using personnel
who are not involved in the development effort, and whose
understanding of the software and its requirements is not
influenced by the development team. Technical
independence can also be increased by using different tools
and techniques than those used by the development team.

As well as the degree of independence, the depth and
coverage of analysis performed by an IV&V agent may
vary depending on resources available, and the criticality of
the software being developed.

Relationships

Figure 1 shows the relationships between customer,
developer and IV&V agent in the ideal model for IV&V. In
weaker forms of IV&V, the IV&V agent might report to
the program management office within the customer
("modified IV&W'), or directly to the development
contractor ("internal IV&V") [7].

The tensions between the IV&V and development
contractors can affect their working relationship. The two
contractors have potentially conflicting goals: the
development contractor's goal is to produce the required
system within cost and schedule constraints; the IV&V
contractor's goal is to identify errors and risks. These goals
are in conflict whenever problems identified by IV&V
have cost or schedule implications. To prevent this
conflict causing problems, it is important that the
relationship is based on mutual respect. For example, if

I Program I SafetylQ_ I

._"

Figure 1: The relationships between IV&V agent,
developer and customer.

the developer regards the IV&V agent as an ally in the
effort to produce high-quality software, then the conflict
can be avoided. If they regard the IV&V agent as an enemy
put there to find fault with their work, the conflict
becomes central to their relationship.

THE PRESCRIBED PROCESS

During the 1970's and 1980's, software came to play an
important role in enabling NASA's development of larger
and more complex spacecraft. Unfonunately, NASA's
culture of prototype and test did not carry over well to the
software domain [8]. A number of factors make software
significantly different, and inherently less safe. Blum [9]
lists: the complexity of software in relation to its size
(software has no duplicated components), the lack of a
fabrication stage (software is purely a design), and chaotic
behavior (huge changes in behavior in response to minor
changes in input). In addition to these, software is seen as
more malleable than hardware: because of the lack of a

fabrication stage, most engineers believe that it is easier to
alter software than hardware in response to changing
requirements.

Although software was not implicated in the Challenger
accident in 1983, the subsequent inquiry offered a chance
to assess all aspects of NASA's development processes.
The Rogers commission identified a lack of independent
oversight of development processes as a significant factor

in the Challenger accident. There was no process for
dealing with problems that arose in the engineering
processes, and in particular, a lack of independent risk
assessment. Risks were accepted in the face of schedule
pressures, while the role of separate safety panels was
reduced. Two subsequent NRC reports warned that
software is under-represented in NASA's safety programs,
and that "many of the same mistakes that contributed to
the Challenger accident are now being repeated with
respect to software" [6]. These reports recommended that
NASA adopt software IV&V for shuttle and for all future
manned missions. The adoption of IV&V was an attempt
to redress the imbalance between safety and cost/schedule
pressures, and to strengthen the oversight function.

Value of IV&V

The main value of IV&V is the fresh perspective it
offers on questions of software safety and correctness. Like
a doctor providing a second opinion on a life-threatening
diagnosis, IV&V provides a second opinion to counter-
balance that of the developer. Questions about safety and
risk then become a dialogue rather than a monologue.

The cost of IV&V is typically a few percent of the
entire development cost, while the benefit is a signifi-
candy reduced risk of loss of life, loss of a spacecraft, or
loss of a mission. For example, IV&V for space shuttle
software costs approximately $3.2 million per year. The
cost of each mission is around $700 million, and the cost

to replace a shuttle is estimated at $2 billion [6].
As well as reducing risk, IV&V has other benefits [10].

Errors are found earlier in the development process, and
therefore are cheaper to fix. While this does not imply

testing should be any less rigorous, savings can be made
because the requirements specifications used to drive the
testing process are clearer, and less effort may be needed
for error-removal and re-testing. The delivered software
should have fewer defects.

There is strong pressure from within NASA to measure
the effectiveness of IV&V, in order to ensure value for

money from its contractors. Although the general benefits
of IV&V are known, there is no generally accepted means
of measuring the effectiveness of a specific IV&V
contract. A small number of quantitative studies have been
conducted over the last decade [10]. These have focused on

the collection of metrics on the number and severity of
problems identified, and have estimated the potential cost
of delayed detection of these problems. Such studies appear
to have established that, in general, IV&V pays for itself
several times over because of early detection of problems.
However, these studies were fraught with methodological
difficulties, and the benefits clearly depend to a very great
extent on how IV&V is implemented.

The prescribed IV&V Process

The IV&V process adopted on recent NASA programs is
consistent with that described by Lewis [7]. Ideally, IV&V
begins before the development contract is awarded,
reviewing the contract itself, and the decisions made during
the bidding process. It then performs analysis activities
throughout the devlopment process, producing regular
briefings for the customer. The normal mode of working
is to receive draft deliverables from the developer, perform
various kinds of analysis on them, and report the results
simultaneously to the developer and the customer.

The core of Lewis's process model for IV&V is a
description of the activities to be performed at each phase
of the development process. Figure 2 illustrates the
portion of this model pertaining to the requirements phase.
Without going into too much detail, it can be seen that
the model encompasses activities such as checking for
completeness, consistency, and testability of the
requirements, performing requirements traceability
analyses, evaluating the proposed development
environment, assessing applicability of chosen standards
and guidelines, monitoring schedule, staffing and other
resource issues, and tracking issues and risks.

Similar process models are defined for each phase of the
traditional software lifecycle. This set of process models is
intended to be a complete account of all possible IV&V
activities. Each individual project will then tailor the
process by selecting those activities that are appropriate
for the level of criticality and available resources.

CASE STUDY

We now describe an example IV&V activity. The IV&V
team try to use methods and tools that are different from
(hut complimentary to) those applied by the development
team, in order to maximize their technical independence.
The example we describe here involves the use of a formal
method to analyze a section of an informal requirements
specification. While formal methods are not yet in

widespread use in IV&V, the activity we describe should
give a good idea of the focus and scope of IV&V
requirements analyses.

Our example concerns the analysis of specifications on
the Space Station project. A Software Requirements
Specification (SRS) is written by the relevant
development contractor for each Computer Software
Configuration Item (CSCI). These are written in natural
language, and follow the format of DOD-STD-2167A. The
IV&V contractor periodically receives copies of the SRS
documents, in various stages of completion. These are
analyzed for technical integrity by the IV&V contractor, in
order to identify any requirements problems or risks. The
kind of analysis performed will vary according to the level
and the type of specification. If problems are identified, the
IV&V contractor may recommend that either the
requirements be rewritten, or the problem be tracked
through subsequent phases.

We focus here on the analysis of the Fault Detection,
Isolation and Recovery (FD1R) requirements for the Bus
Controller, on the main 1553 communications bus on the

space station. The bus controller monitors for
communication errors on the bus, and if it detects errors in

two consecutive processing frames, it may invoke an
appropriate recovery response, depending on a number of
conditions. The requirements for this function were
specified in the SRS in English prose. An example :

(2.16.3.b) While acting as the bus controller, the
C&C MDM CSCI shall reset the current SPD

channel and pause the Bus FDIR logic on the SPD
1553 channel for TBD (6-12 seconds) seconds (until

the channel is back on-line) upon detection of
transaction errors of the selected messages to RTs
whose 1553 FDIR is not inhbited in two consecutive

processing frames within 100 millisec of detection of
the second transaction error if," the SPD Channel's
reset capability is not inhibited, the bus has not been
switched in the major (10-second)frame, and either:
• I) the switch to the alternate bus is inhibitea_ or
• 2) the bus has been switched in the last major frame.

The IV&V team might examine a number of properties
of these requirements, including:
• Clarity - are the requirements clear and unambiguous?
• Consistency - are they free from contradiction?
• Traceability - do these requirements trace properly to

higher level requirements, to the design, to test cases?
• Validity - do these requirements correctly describe the

needs for automated failure detection and recovery? Do
they accurately reflect the results of previous failure
mode analyses performed on the bus architecture?

• Completeness - are all the failure modes and recovery
actions covered? Does each requirement give a complete
description of the conditions needed to decide whettw_
the prescribed recovery action is the correct one?

• Testability - is there a way to verify whether these
requirements are met in the implementation?
In this example, the requirements as stated were not

clear, as the combinations of 'ands' and 'ors' in an English
sentence were very hard to interpret correctly. The IV&V
analysts therefore produced a logic table, to represent the
combination of conditions described in _ requirements,
and recommended to the development team that a similar

Figure 2: Lewis's process model for IV&V in the Requirements Phase. Adapted from [7].

approach be adopted for all such requirements.
Having produced a clearer representation, the IV&V

team then proceeded to identify properties of the
specification that should hold if it is consistent and
complete. A consistency property is that there should be
no combination of conditions for which two different

failure recovery actions are specified. A completeness
property is that every possible combination of failure
conditions should have some recovery action specified for
it. These properties were tested by converting the tabular
representations into a formal model (in this case SCR
[liD, and using a tool to test for these properties. A
significant number of consistency errors were found: there
were combinations of conditions for which more than one

recovery action was specified. These were traced to a
problem with the ordering of the requirements. The correct
functioning of the FDIR software depends on the tests
described in these requirements being carried out in the
order that the requirements are given. However, this is not
stated explicitly. This finding confirmed an earlier
informal observation by the IV&V team.

At this point the IV&V team would have gone on to
check the validity of the requirements against a failure
modes and effects analysis of the bus architecture.
However, at this point in the case study the IV&V team
found out that this section of the requirements was being
substantially re-written. Hence they delayed further
analysis until the new version became available.

This case study illustrates two interesting points about
the work of an IV&V agent. First, the IV&V analysts
often create their own representation (for example a formal
model) of the developer's specification. However, these
alternative representations are never given to the
development team to use in place of the original
specifications. This is to guard against the danger of the
IV&V team being drawn into development work, and
possibly losing their independence on subsequent analyses
of these components.

Second, the IV&V team have their own discretion on

how much analysis to perform. For example, the analysis
does not stop when the first error is encountered. If there is
an obvious fix to the error, it makes sense for the IV&V
team to assume this fix will be made, and proceed with
other types of analysis. However, there is a point beyond
which further analysis adds little extra value; for example
when major errors are encountered, or when, as in this
case, a re-write is underway.

DIFFICULTIES IN IV&V

Having described the basic IV&V process, and illustrated
it with a case study, we now discuss some of the
difficulties faced by IV&V in carrying out their role. Our
current research is investigating these problems, and
seeking ways of overcoming them.

The following difficulties are inherent in the
relationships between the developer, customer and IV&V
agent. Some of these arise as a direct result of the
conflicting goals of IV&V and developer; others are to do
with resource pressures and the need for timely results:

• resource allocation - A complete, detailed analysis
of the entire system is infeasible. Effort has to be
allocated so as to maximize effectiveness. For example,
a criticality and risk analysis might be performed to
determine which components need the most scrutiny.
Timing is also a factor; effort needs to be allocated at
the right points in the development of a product (e.g. a
document), so that the product is mature enough to be
analyzed, but not so mature that it cannot be changed.

• short timescales - To be most effective, IV&V
reports are needed as quickly as possible. There is
always a delay between the delivery of an interim
product to the IV&V team, and the completion of
analysis of that product. During this time, the
development process continues. Hence, if IV&V
analysis takes too long, the results might be available
too late to be useful. In general, the earlier an error is
reported, the cheaper it is to correct, and the less reticent
the developer is to fix it.

• lack of access - Contact between the development
team and the IV&V team is difficult to manage. The
IV&V team needs to maintain independence, whilst
ensuring they obtain enough information from the
developers to do their job. From the developers' point of
view, interaction with the IV&V team represents a cost
overhead, which can interfere with project deadlines.
Inevitably, the IV&V contractor has less access to the
development team than is ideal.

• evolving products Documentation from the
development team is usually made available to the
IV&V contractor in draft form, to facilitate early
analysis. The drawback is that documents may be
revised while the IV&V team is analyzing them,
making the results of the analysis irrelevant before it is
finished.

• reporting the right problems - The IV&V
contractor has, by necessity, considoable discretion over
the kinds of analysis to perform on different products,
and which problems to report. It is vital to the effective
use of IV&V that the IV&V contractor prioritizes the
problems it identifies. If too many trivial problems are
reported, this may swamp the communication channels
with the developer and the customer, and compromise
the credibility of the IV&V agenL

• lack of voice - The IV&V contractor may have
difficulty in getting its message across, especially if the
development contractor disputes IV&V's assessment.
Often, problems found by IV&V have cost and schedule
implications, and in such circumstances the customer
may be unwilling to listen. The effectiveness of IV&V

then depends on having a credible advocate within the
customer organization.

We discuss some of these problems in more detail below.

Coordination problems

In order to investigate these problems further, we

developed a set of scenarios describing particular IV&V
activities, and used these to explore where coordination
problems occur. Easterbrook [12] describes these scenarios

in more detail. Here we present one of the scenarios, and
discuss some of the problems it reveals.

Figure 3 shows a relatively formal process by which
discrepancy reports originating from an IV&V analyst
("Carl") are entered into a database to be tracked, and a
member of the development team ("Diane") is
dispositioned to address the problem. In this case, the error
is detected through an analysis similar to the one we
described above for the case study.

From Carl's point of view, the process is as follows.
Carl analyzes a section of the requirements document by

generating a formal model of the section, and then running
this through an automated consistency checking tool. The
tool reports an inconsistency, which Carl traces back to a
mistake in the original document. He writes a Discrepancy
Report (DR). Let us call this DR#101. Three months
later, a new draft of the specification is released. Carl
checks to see which of his DRs have been addressed in this

new draft. DR#101 is marked as having been worked on
(by Diane), and is awaiting approval for closure. As the
originator of the DR, Carl's signature is required. He
updates his tabular representation to reflect the new draft,
runs the new version of the model through the tool again,
and confirms that the problem is now fixed. He therefore

signs off the DR as closed.
The DR tracking tool avoids many potential

communication problems, and ensures that closure is
achieved for each reported problem. However, coordination
problems can still occur.

For example, Carl could make mistakes in the
translation from the text to the table - it is hard to confirm

that the table is a faithful representation of the textual
requirements. Similarly, Carl might not be able to trace
the inconsistency back to the original requirements. He
would then have great difficulty reporting the problem in a

Spec library Carl Anal

creates formal
model

traces _
errors "_

New _ _ _ao
draft "

oo _\x,,v
l.q _"

Oe _¢o

_ ogv

DR, unless be includes his tables, a description of the
checking process, and some evidence that the tables are
faithful to the original. This will make the DR rather
cumbersome for a review panel to process.

Diane might not understand the problem. She might not

be familiar with the tool that Carl uses. She might fail to
correct the inconsistency, or might introduce more
inconsistencies in this section. Carl may have problems
updating his tables, perhaps because Diane (or someone
else) has reorganized the section.

So, the error might still be there in the new draft. Worse
still, it might be corrected in the new draft, and then
reintroduced in subsequent versions, because some other
change interferes with this one. Does this mean Carl has
to update the table and re-run his checks again every time a
changed draft is released? The problem here is one of
representing relationships between the DR, the
specification, and Carl's model. Tools that support
traceability and configuration management help here, but
do not guarantee that errors will not recur.

The scenario illustrates how expensive it can be to
develop and maintain an alternative representation of an
evolving specification. This may mean that this type of
analysis gets delayed until the specification is relatively
stable. This is undesirable.

Informal interactions

The process of tracking reported problems through a
tool such as the DR tracker above is standard practice on
most large projects. However, it is not the only means
available for reporting and fixing problems, and there are
good reasons why it will not be used for every problem.
Consider an alternative scenario. Carl thinks there may be
a mistake in the specification, but is not sure enough to

• l.ist nf clnstst is

no errors

clnses DR #1ill

,sis tool

runs tool

lies ..mS

runs tool

_o s _._e_"eQ

DR tracker Diane

dignosilinn

marks DR#101
as "corrected"

• fixes errors

Figure 3. A possible scenario between an IV&V analyst (Cad) and a developer (Diane), annotated with
potential wobloms

write a discrepancy report. So instead, he phones the
author of the requirement in question ("Bob") and discusses
it. In discussing it, they both realize it is a problem, and
Bob says he can fix it immediately. Many minor problems
are fixed in this way, by informal interaction between an
IV&V analyst and his counterpart on the development
team, without the overhead of writing discrepancy reports.

Unfortunately, there is a risk in using this alternative
informal communication channel. If a face to face meeting
is not readily available, it may take some effort to get in
contact with the relevant member of the development
team, during which time there is a danger that the problem
might be forgotten. Communication could also fail
because either Carl or Bob get transferred to another

project or task.
The problem of other people making changes that

interfere with this correction is even more acute here, as
there is no record of the error that Carl and Bob identified,

nor what change was made to address it. Other people have
no visibility into the process that Carl and Bob went
through.

The question of whether to formally track every single
error discovered, no matter how minor, is a difficult one.

As we have seen the tracking process removes some of the
potential communication problems, but by no means all
of them. It can be an expensive process to disposition
discrepancy reports, follow up open issues, and ensure all
are eventually signed off. It is possible to have several
different issue tracking databases for a large project, with
different levels of formality (and therefore cost) associated
with them. However, this can introduce further problems
in interactions between the different databases.

Conflict Resolution

In the scenarios above, we assumed that when Carl

detects an error, the development team agree with his
assessment. However, this is not always the case. The
development team may disagree over whether a problem
exists. Or they might agree that it exists, but refuse to fix
it because of cost and schedule implications. Most
importantly, it is possible that IV&V and developers
disagree on whether it represents a safety risk.

A common reason for disagreements arising between the
developer and IV&V team is that the resources are not
available to address an issue raised by IV&V. In these
cases, the IV&V team can act in the development team's
interest, by taking the issues to higher levels of
management, and pressing for more resources so that the
development team can address the problem. The IV&V
team may be more successful in securing the necessary
resources than the development team would be if the
request came directly from them.

In all cases of disagreement, there is a process for
resolving the issue. Most of the problems identified by
IV&V analysts are resolved by direct communication
between the IV&V team and the development team. If they
do not agree on the assessment of a particular problem, the
IV&V team have to decide whether it is important enough
to pursue further. If it is not, they still track it, to ensure

®

N&V

®

F'_jure4: The con_ resolution process.

it does not develop into a serious problem. If they do
decide to pursue it, they will raise it with increasingly
higher levels of management within the development and
customer organizations (see figure 4), until they are
satisfied that an appropriate response has been made, and
that the relevant managers are aware of the problem.

Figure 4 shows a typical path that a controversial issue
might take. If the IV&V team and development team
cannot agree, then the IV&V team will alert their
manager. If they decide the issue is important enough to
pursue, then the managers within the IV&V contractor and
development contractor will discuss it. If there is still no
agreement at this level, then the IV&V contractor will
request that the IV&V manager on the customer side raise
it at the next Change Control Board (CCB) meeting. At
this meeting, the IV&V team will present its case,
describing the problem, the potential impacts, and
recommendations. The development team then presents its
view, including any steps they have taken to mitigate the
risk. If the IV&V team are unhappy with the outcome,
they can continue to pursue the issue at higher levels.
Ultimately there are high level committees both inside and
outside of NASA, such as the Aerospace Safety Advisory
Panel (ASAP) who can continue to pursue the issue.

There are two main problems with this process. The
first of these is the time it takes to pursue the issue
through the various levels of managemenL At each stage
there is a potential for delays of several months, whether
intentional or not. In such cases, it is important that
IV&V have a champion within the customer organization
who can press for action to be taken as appropriate.

The second problem is one of presentation. Often the
risk arising fi'om a problem identified by IV&V is detailed
and technical in nature, while the counter-argument is
purely financial - it will cost money to mitigate the risk.
Furthermore, higher levels of management may be
unfamiliar with the technical details, especially when
dealing with new technology. Within NASA, senior
management often have little or no experience of software
engineering, in which case the presentation by IV&V
needs to include a substantial amount of tutorial material.

CONCLUSIONS

This paper has examined the role of IV&V in the

software development process, concentrating especially on

its role in requirements and design processes. IV&V

provides an independent assessment of both developmental

and operational risk. It helps to identify safety, reliability

and performance concerns early in the software lifecycle,

and has generally been demonstrated to save money though

early identification of errors.

The role of IV&V is complementary to that of QA.
Where QA focuses on checking that appropriate standards

and process models are applied, IV&V focuses on the

technical integrity of the software, through analysis of
specifications, designs, code, and other documentation.

Hence, IV&V will ensure that the requirements are

complete, that a proposed system architecture will meet

the requirements, and that traceability is demonstrated

among requirements, designs and test cases.

An interesting emergent property of the IV&V process

is that the IV&V agent can play a role as a process

improvement agent, for a number of reasons. First, the

recommendations made by IV&V in response 1o errors
often address ways to prevent similar errors occurring in

the future. Second, the IV&V team have some flexibility

to apply new techniques and tools, especially where these

plug perceived gaps in the analysis performed by the

developer. If these new techniques and tools demonstrate

their value in identifying errors, the development team

may choose to adopt them themselves. Finally, the

presence of an IV&V contractor provides an incentive for

the developers to improve their own internal V&V

practices, in order to catch errors before the IV&V
contractor does.

Within the process model described for IV&V, there are

still a number of problems. Some of these arise from the

constraints imposed on the IV&V process. For example,

the IV&V team need to devote resources to analyzing

documents as soon as they are released, without

necessarily knowing ahead of time what types of analysis

will be needed. Other problems are due to the inherent

conflicts between the goals of the developer and the IV&V

contractor. For example, the developer may be reluctant to

release draft documents to the IV&V team, for fear that the

IV&V contractor will make them look bad by reporting

large numbers of problems to the customer.

Although IV&V has been generally shown to have

strong benefits, it is difficult to ensure that any particular

IV&V effort will be effective. While an understanding of

the processes involved is an important step, the biggest

factor determining the effectiveness of an IV&V contract is

the nature of the organizational relationship between the

developer, customer and IV&V agent. Although the

developer may be contractually obliged to work with the

IV&V agent, this does not ensure a constructive
relationship. Nor does it ensure that the customer will

listen to the IV&V agent when the news is bad.

Research agenda

Our research to date has concentrated on observing the

IV&V process, and identifying problem areas, as described

in this paper. We are now focusing on potential solutions

to the coordination problems illustrated by our scenarios.

These problems are a result of the size of the
documentation, and the fact that it continues to evolve.

Tracing the effects of any small change to a specification

is especially difficult. Where the IV&V contractor creates

alternative representations for the developer's

specifications, it can be difficult to ensure the alternative

representations are faithful to the original. Furthermore,

the models created by the IV&V team need to be updated

whenever the documents on which they are based evolve.

There is always a tension between the need to analyze

drafts of the specifications in order to detect errors as early

as possible, and the volatile nature of these early drafts.

We are also investigating the use of lightweight formal

methods for checking properties of partial specifications.

The majority of work on formal methods assumes a

commitment to the development of a complete and

consistent formal specification. In contrast, when we use

formal methods in the IV&V process, we are interested in

developing just enough of a formal model to test particular

properties. Problems here include the maintenance of

fidelity between formal and informal representations of the

same specification. Existing work on consistency

checking does not help here, it generally assumes that

consistency checks are being applied within a well-defined
method, rather than between methods [13]. We are

currently pursuing techniques based on behavioural

analysis of formal specifications using model checkers.

ACKNOWLEDGMENTS

Thanks to Jack Callahan, Chuck Neppach, Dan

McCaugherty, John Hinkle, and Gevo_y Laughlin for their

input to this work, and to Edward Addy, George Saboloish,
Butch Neal, and Frank Schneider for comments on earlier

versions of this paper. This work is supported by NASA

through cooperative agreement NCCW4)040.

REFERENCES

[1] J.L. Lions, ARIANE 5 Flight 501 Failure: Report by the

Enquiry Board. European Space Agency, Pads 19 July
1996.

[2] G.G. Schulmeyer, The Move Towards Zero Defect
Software. In Handbook of Software Quality Assurance,

G. G. Schulmeyet and J. I. McManus, Eds., Second
Edition. New York: Van Nostrand Reinhold, 1992.

[3] B. W. Boehm, Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall, 1981.

[4] NASA, Software Assurance Guidebook. NASA Goddard
Space Flight CenteL Report SMAP-GB-A201. 1989.

[5] D.R. Wallace and IL U. Fujii, Software Verification and

Validation: Its Role in Computer Assurance and Its

Relationship with Software Project Management

Standards. NIST Computer Systems Lab, Gaithersburg,

MD, NIST Special Publication 500-165, 1989.

[6] N.G.Leveson, An Assessment of Space Shuffle Flight

Software Development Processes. Washington DC:

National Academy Press, 1993.
[7] R.O. Lewis, Independent Verification and Validation: A

Lifecycle Engineering Process for Quality Software. J.

Wiley & Sons, 1992.

[8] R.W. Butler and G. B. Finelli, The lnfeasibility of
Experimental Quantification of Life-Critical Software

Reliability. ACM SIGSOFT 91 conference on Software

for Critical Systems, New Orleans, Dec 4-6 1991.

[9] B. 1. Blum, Software Engineering: A Holistic View. New

York: Oxford University Press, 1992.

[10] Jet Propulsion Lab, Cost-effectiveness of Software
Independent Verification and Validation. NASA JPL,

Pasadena, CA, NASA RTOP report 1985.

[11] C. L. Heitmeyer, B. Labaw, and D. Kiskis, Consistency

Checking of SCR-Style Requirements Specifications.

Second IEEE Symposiura on Requirements Engineering,
York, UK, 1995.

[12] S. Easterbrook and J. Callahan, Independent Validation
of Specifications: A coordination headache.

Proceedings, IEEE 5th Workshops on Enabling Techno-

logies: Infrastructure for Collaborative Enterprises

(WETICE'96), Stanford, CA, Jun 19-21 1996.
[13] S. Easterbrook and J. Callahan, Formal Methods for

V&V of partial specifications: An experience report.

Proceedings, Third IEEE Symposium on Requirements
Engineering (RE'97), Annapolis, MD, 5-8 Jan, 1997.

